Intrinsic-58 Mod

Top  Previous  Next

58: real:= Mod(real, real);

 

This intrinsic computes the modulo function. This is the real counterpart to the Rem intrinsic (2). Mod(A, B) is defined as A modulo B, which is defined as A - Int(A/B) * B. Where Int(A/B) extracts the largest integer <= Abs(A/B) and attaches the sign of A/B (i.e. it truncates toward zero). For example:

 

       X:= Mod(10.2, 3.0);   \X:= 1.2

       X:= Mod(-10.2, 3.0);  \X:= -1.2

       X:= Mod(123.456, 1.0);\Get the fractional part (0.456)

       X:= Mod(7.6, 2.5);    \X:= 0.1